Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Res ; 344: 199362, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508402

RESUMEN

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Asunto(s)
Genoma Viral , Ilarvirus , Filogenia , Enfermedades de las Plantas , Polen , Vitis , Vitis/virología , Enfermedades de las Plantas/virología , Polen/virología , Ilarvirus/genética , Ilarvirus/aislamiento & purificación , Ilarvirus/clasificación , Animales , ARN Viral/genética , Secuenciación Completa del Genoma , Thysanoptera/virología
2.
Virol J ; 21(1): 6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178191

RESUMEN

BACKGROUND: In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD: Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS: While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION: Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.


Asunto(s)
Coinfección , Euphorbia , Ácidos Nucleicos , Virus de Plantas , Potyviridae , Virus ARN , Inosina Trifosfatasa , Filogenia , Virus ARN/genética , Nucleótidos/genética , Potyviridae/genética , Virus de Plantas/genética , Plantas/genética , ARN Viral/genética , Genoma Viral
3.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549001

RESUMEN

Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.


Asunto(s)
Virus Fúngicos , Virus ARN , Cladosporium/genética , Virus Fúngicos/genética , Virus ARN/genética , Proteínas de la Cápside/genética , Hongos , ARN Polimerasa Dependiente del ARN/genética
4.
Plant Dis ; 102(3): 651-655, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673492

RESUMEN

Grapevine red blotch virus (GRBV) is a recently described virus that infects grapevine. Little information is available on the possible occurrence and distribution outside North America. Therefore, we surveyed commercial vineyards from the three major grape-growing regions in Switzerland to determine the presence or absence of GRBV. In total, 3,062 vines were analyzed by polymerase chain reaction. None of the vines tested positive for GRBV, suggesting the absence of GRBV from Swiss vineyards. We also investigated whether GRBV was present in 653 grapevine accessions in the Agroscope grapevine virus collection at Nyon, including dominantly Swiss (457) but also international accessions. Only six referential accessions were infected by GRBV, all originating from the United States, whereas all others from 10 European and 8 non-European origins tested negative. High-throughput sequencing analysis of Zinfandel A2V13, in the collection since 1985, confirmed close similarity of GRBV isolate Z_A2V13 to American isolates according to genomes deposited in GenBank. Because the Zinfandel A2V13 reference was also maintained grafted on the leafroll virus indicator Vitis vinifera 'Gamay', we evaluated the effect of GRBV on viticultural performance over a 3-year period. Our results showed clear detrimental effects of GRBV on grapevine physiology (vine vigor, leaf chlorophyll content, and gas exchange) and fruit quality. These findings underscore the importance of implementation of GRBV testing worldwide in certification and quarantine programs to prevent the dissemination of this virus.


Asunto(s)
Geminiviridae/fisiología , Enfermedades de las Plantas/virología , Vitis/virología , Frutas/virología , Hojas de la Planta/virología , Suiza , Vitis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...